
Database – “Oracle Internals & Performance”

YOUR YOUR MACHINEMACHINE ANDAND MY MY DATABASEDATABASE - - AA PERFORMINGPERFORMING
RELATIONSHIPRELATIONSHIP!?!?

Martin Klier, Senior / Lead DBA
at Klug GmbH integrierte Systeme, Teunz, Germany

INTRODUCTION

THIS PAPER

“YOUR machine and MY database - a performing relationship!?” is intended to be an information
for Oracle DBAs, DB developers and system administrators who want to learn more about how
databases, operating systems and hardware works together.

Databases affect machines, machines affect databases. Optimizing one is pointless without knowing
the other. System administrators and database administrators will not necessarily have the same
opinion - often because they know little about the opposite's needs. This lecture was made to
promote understanding - showing how the database can stress the server, and how the server can
limit the database. And why two admins sometimes don't speak the same language, not even with a
developer as an interpreter.

• Recall the different needs of different technical layers underneath a database system.
• Understand the technical collaboration of hardware, operating system and database.
• Plot ways how to avoid collisions, competition and concurrency.
• Promote collaboration!

This white paper and its presentation were written in late 2013 and early 2014 from scratch for
IOUG forum at COLLABORATE 14.

AUTHOR
Being in IT business as a specialist for Linux, Martin Klier (martin.klier@klug-is.de) has been
involved in the administration of Oracle Databases for about ten years now, and works on senior
level for more than four years. The integration of large Oracle-based high-availability solutions
(MAA) with RAC and Data Guard were the first challenges. In the last six years he largely moved
into performance analysis and tuning of complex systems with dynamically changing load profiles.
Skeptical needs assessments, thorough architecture planning, decent system sizing, critical
benchmarking and experienced load-focused system analysis are Martin's formula to success in
avoiding production downtime.

Martin frequently blogs about recent issues and their solutions at http://www.usn-it.de/ and is
known on Twitter as “@MartinKlierDBA”.

Session #141 - Martin Klier: “YOUR machine and MY database”

mailto:martin.klier@klug-is.de
https://www.twitter.com/MartinKlierDBA
http://www.usn-it.de/

Database – “Oracle Internals & Performance”

COMPANY

Klug GmbH integrierte Systeme (http://www.klug-is.de) is a specialist leading in the field of
complex intra-logistical solutions. The core competence is the planning and design of automated
intra-logistics systems with the main focus on software and system control.

CONTACT

Klug GmbH integrierte Systeme
Lindenweg 13
92552 Teunz
Germany
Phone: +49 9671 9216-0

PRODUCT

The company's product series, the “Integrated Warehouse Administration & Control System”
iWACS® is a standardized concept of modules offering the tailor-made solution for the customer's
individual requirements in the field of intra-logistics. With the iWACS® concept, customers do not
only gain maximum flexibility, but also an optimal cost/performance ratio.

Developed with state-of-the-art software technologies, the iWACS® module .WM is an adaptable
standard software granting flexibility and system stability. The warehouse management system
.WM controls and organizes all tasks from goods-in to dispatch and is up to all requirements from
manual warehouse to fully automated distribution center. To interlink .WM with any ERP system,
customers can dispose of tried and tested standard functions.

ORACLE DATABASE

The desire of Klug GmbH integrierte Systeme is to deliver a completely rounded solution. This
intent and promise includes, that Oracle databases used as an iWACS® backend are flawlessly
integrated, stable and well-performing.

In early 2014, Klug was awarded the “Oracle Excellence Award 2013” for Independent Software
Vendors (ISVs).

Session #141 - Martin Klier: “YOUR machine and MY database”

http://www.klug-is.de/

Database – “Oracle Internals & Performance”

NUMA

BASIC

Non-Uniform memory Acces (NUMA) is a computer memory design used in multiprocessing,
where typically each CPU has RAM locally attached. Accessing data in another CPU's memory
(=remote), results in additional latency due to bus transfer times.

This graph shows an example layout, based on the Intel Nehalem EX architecture.

In this case, the QPI bus (“Quick Path Interconnect”) interconnects the CPUs. Each processor has
an internal memory controller (IMC) to access its local RAM (in the “remote-case” on behalf of
another CPU) . But last-level caches are dedicated to each CPU or core; in fact we see an example
for cache-coherent NUMA, ccNUMA, here.

ORACLE AND NUMA
Oracle is NUMA aware, respectively supports NUMA with appropriate hardware and operating
systems. In Oracle Database 11.2 and 12.1 we can enable working with this architecture by setting
an instance parameter (“_enable_NUMA_support = TRUE”) as described in Doc ID 864633.1 at
My Oracle Support.

An instance supporting NUMA will start up splitting its buffer cache between the recognized
NUMA nodes. Large-, Shared-, Streams-, Java- and other pools are striped over the different local
RAMs. Please seen the following IBM graph for details. It's an AIX example.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

It's quite straightforward to see many possible limitations in the block diagram. One of the most
obvious examples is the Redo Log Buffer. Let's follow a classical block manipulation from a Redo
perspective:

• Server Process 1 manipulates one buffer in buffer cache of node SRAD0. It's local, and
quick.

• SP 1 has to write the Redo data for it into a private strand, that's in Shared Pool. Due to the
striping, a statistical 3/4 of the data is written remotely and thus, slower.

• When SP 1 does its commit, data has to be transferred to the Redo Log Buffer, that's in
remote node SRAD1's RAM: slow.

• During commit, the Log Writer has to read our data from Log Buffer to send them to the
current Online Redo Log. If we assume that the background process attached to SRAD1 in
fact IS the Log Writer, all is fine, and we have a fast local read. If not, it's a slow remote
case.

What this theoretical example was meant to show is, that it's not easy to predict how things will
settle after enabling NUMA support in your instance. It's necessary to check NUMA statistics, and
value them carefully. In Linux, “numastat” gives absolute numbers counting upwards from last
reboot. “numa_miss” or “numa_foreign” is what shows us, how many allocations failed to access
locally, or how many foreign allocs happened.

Comparing how fast numa_miss is growing after switching Oracle to NUMA support, reveals the
effect of the measure.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

In theory, we should pin our users to NUMA nodes, maybe by having one listener on each node. In
this case, they will fork dedicated servers on the local NUMA node, and thus, minimize buffer
cache cross pooling. Another IBM graph:

REAL-WORLD-TEST

This test case was done on a live system, used for product development, in order to have a realistic
long-term workload. The server has two physical CPUs, each one representing one NUMA node.
The memory distribution between the nodes is visible from the graph.

The buffer cache size is 26 GB:

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

When starting the instance with “_enable_NUMA_support = TRUE”, by executing “ipcs -ma” we
can see that the buffer cache was split in two, as expected:

After configuring the system, it was running for several days of production. But comparing between
before, working without NUMA support:

and after, working with NUMA support:

there was not much of a difference. By enabling NUMA, so activating an alternative code path and

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

taking many risks by means of organization and possible bugs, we had no improvement. In fact,
there was not even a problem to solve - less than one numa_miss per second is hardly an issue. But
why did the system work well without Oracle NUMA support? Because the operating system takes
care of that. Here Linux recognized a big shared memory object, and it fits into the RAM of one
node. Trying to run all processes as local as possible, most of the database work is done at the node
where the big buffer cache resides.

NUMA SUGGESTIONS

1. NUMA is mostly interesting for really big machines, for example in database consolidation
systems. The partitioned approach of them, typically by user groups, applications or
locations, is ideal for node-islands serving their consumers.

2. For big universal databases, it's on the edge, and needs, risks and benefits should be
leveraged.

3. In any cases, NUMA support for Oracle has to be thoroughly tested, and quantified
objectively.

4. Discussing the matter with the system administrator is mandatory: Both the DBA and the
Sysadmin need to understand where the benefits and drawbacks are. DBAs should transfer
knowledge about the application structure - usually they know a lot about it, since they are
in contact with all the non-database tiers.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

MEMORY PAGE SIZE
The operating system allows applications to access and allocate memory page wise. For each page
access, specific system calls have to be executed.

BASIC

Memory allocation or access calls run through permission and protection checks, and have to be
integrated in serialization structures. This is inevitable, but costs additional CPU cycles, and thus,
time. When Oracle waits for a new process to spawn, we see “OS_THREAD_STARTUP“ in the
wait interface.

One way to reduce process startup time, corresponding locks and the resulting resource
consumption, is to reduce the number of pages for a given case. The need to deliver the requested
amount of memory, leads to increasing the page size.

The standard page size for Linux, for example, is 4 kilobytes. With enabling large pages, the size
increases to 2MB. Another example is AIX with base page sizes of 4k and 64k, and allows 16MB
large pages or even 16GB huge pages. Other Unix systems have similar concepts.

A simple calculation: 64GB of SGA in 4k pages means 16.7 million page access calls. Changing the
page size to 2MB means only 32 thousand pages. Thus, the overhead is reduced by factor 5,000.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

REAL-WORLD-TEST

On the Linux machine some tests were done on for this paper, (working with Oracle 11.2.0.4, 32GB
of SGA and approx. 1000 dedicated sessions) process start-up time reduced by 92% and
OS_THREAD_STARTUP waits vanished below AWR reporting measure.

PAGE SIZE SUGGESTIONS

1. Larg(er) pages unfold their effect with 16GB of SGA or more, but they will do no harm on
smaller setups.

2. The larger the page size, the greater the effect is. A big, but sane page size is the way of
choice.

3. Some system admins don't like fumbling around here, especially if they don't have many
database servers in their responsibility. But setting Large Pages up is quite straightforward.
Talk them into just doing it.

4. Pre-paging the SGA is always a good idea, especially with large- / huge pages. Let the
instance alloc all memory in one rush. The downside is a slightly slower start up (<30
seconds per 64GB), but on the pro side you have no more shared memory blockings for
changing the size after going online with the database.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

SSD STORAGE
Solid-state drives (SSD) are on the rise. They give unchallenged IO power, but are looked at
sceptically when lifetime is discussed. For the DBA, they give a chance to get high performance
from small servers.

SSDs and Hard-disk drives (HDD) differ in many technical aspects, but usually are connected via
the same bus systems (FibreChannel, SAS or SATA).

HARD-DISK DRIVES (HDD)

Hard-disk drives, with a rotating magnetic media, and a read/write head, have four physically
limited reaction times:

1. How quick can the head move to the track?
2. How long does it take to rotate the right data under the head?
3. How long does it take to read the data?
4. How quick can I transfer the data over the controller/bus system?

Typical overall-response times are 3 to 8ms, and a bandwidth of 80-150MB/s. All values depend on
how scattered the data is on the media, which means that predicting the response time is difficult.

HDD lifetime is limited by mechanical deterioration and wear of the magnetic layer. Typically, the
death-time of disks from the same charge and the same usage, spreads over several months or years.

SOLID-STATE DRIVES (SSD)

SSDs have a different technical approach, compared to Hard-disk drives (HDD). Data is

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

permanently stored in semiconductor “flash” cells. They are aligned in a grid, and allow parallel
access to multiple bits at the same time, and thus, have no positioning times.

Each cell is set/reset by different voltage levels and/or currents:
1. High voltage between Ground and the Word- / Bit Lines sets the cell to 1, tunneling hot

electrons through the insulating Oxide Layer into the floating gate.
2. The possible current between Source and Drain is used to ask for the bit status without

changing it. In fact, such a current is not possible with the Floating Gate having a negative
potential. So “no current” means “bit is 1”

3. Grounded Word Line and high voltage on the Bit Line forces the electrons out of the
Floating Gate into Drain, and sets the bit to 0. (Now S-to-D current is possible)

4. Modern flash cells can store more than one bit per cell by setting different potentials into the
Floating Gate, and measuring the possible S-to-D current in a fine-grained matter.

Following this procedure, the SSD has no mechanical parts moving. But forcing the electrons
through the insulating layer, wears off the Oxide, and thus, will steadily reduce the stability of the
potential in the Floating gate each time the bit is set or re-set (“degeneration”). This makes the
lifetime of the cell predictive, but this prediction has only a few counts of tolerance (“endurance”).
Thus, SSDs of the same charge and the same workload die within short time.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

DIFFERENT CHARACTERISTICS

The quite high voltage mentioned above limits the granularity of its use in the semiconductor chip.
So SSDs are organized in blocks, that are always deleted and written together. Means: As soon the
controller changes one bit, the whole block (16B - 512B) is copied to a cache, changed and flashed
back to the medium. This, and the fact that setting the bit takes much more time than reading it,
changes the load-scaling of the SSD compared to an HDD.

The comparison between an HDD and a SSD above shows, that SSDs are faster throughput-wise,
when they can write bigger blocks, since this is more efficient for the block-wise writing described
above.

But for small random IO's, the SSD concept is unbeatable. Top-rated HDD's are able to deliver 140
IOPS for a random workload. A simple desktop SSD (in my example, a Samsung SSD 840 PRO)
gives 8100 IOPS without a problem with 8k/16k blocks. (Tested with Oracle ORION IO
benchmark.)

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

SSD SUGGESTIONS

Using SSDs is ok. There are many industry-standard products with high reliability and very good
performance. My suggestions for SSD in your place are:

1. Know your IO profile, from all possible sources (Oracle perspective from AWR or
STATSPACK, OS perspective from nmon or other tools). Check where SSDs have the most
and best effect, and play their strengths. You will have to help your system administrator
with that. They usually don't know what databases need, so they tend to guessing.

2. Use enterprise-level devices in Single-level cell (SLC) format. Multi-level cells (MLC) are
exponentially slower in re-writing.

3. Your sysadmin will know that: SSDs require different lifecycle handling. For reasons
explained above, they die precisely after n cycles. Use S.M.A.R.T.- and SSD-aware
controllers!

4. In doubt, consider and compare an array of HDDs of the same IO / throughput power.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

CONCURRENCY

BASIC

Concurrency happens - that's a fact. Whenever a system has limited resources or needs to serialize
for logical reasons (think: race conditions). In the first case, the serialization is natural, in the
second case, a protection happens.

OCCURRENCE

There are several situations, where concurrency occurs in a (database) system. Examples are:
• When accessing data, like row locking
• Memory protection in shared memory structures, or collisions in a block header
• Queuing for CPU, Disk IO or Network transfer

ROW LOCK

A row lock is the simplest case of a concurrency. For integrity reasons, Oracle does not allow two
transactions to lock or manipulate the same row at the same time.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

So when Session 1 starts manipulating the row, it creates an Interested Transaction List (ITL) entry
in the block. It's valid, as long as the transaction Session 1 started, is not closed. Session 2 is
interested in the same row, creates an own ITL entry, but has to check the other one repeatedly. It
“spins” while contending for the right to pass along.

SPINNING AND WAIT EVENTS

Spinning means, to actively and frequently check a value in memory. This “wastes“ CPU time for
non-productive work. To ease the threat of CPU starvation, and for the sake of diagnosability,
Oracle only spins for a few hundred cycles, and then reports a Wait Event related to the measure
that was blocked, and starts spinning again. If there was no stop in spinning, we would see just
“CPU usage” without differentiation.

For the example with a row lock, the wait event would be “enq: TX - row lock contention”.

MUTEX WAITS

Mutexes are replacing more and more the latches in the database. At the moment, they usually are
used to protect memory objects being under potentially high stress. This is typically the case in the
Library Cache.

The concept is the same: One has it, the other wants it. One holds, the other spins, and reports wait
events. In this case, “cursor: mutex X/S” and similar.

For details, and special issues with cursor sharing, see my Collaborate 2012 paper
“Resolving Child Cursor Issues Resulting In Mutex Waits”.

Session #141 - Martin Klier: “YOUR machine and MY database”

http://www.usn-it.de/index.php/2012/04/26/ioug-2012-presentation-resolving-child-cursor-issues-resulting-in-mutex-waits/

Database – “Oracle Internals & Performance”

CACHE BUFFER CHAINS

The database buffer cache is organized in “buffers”, means data blocks loaded into memory. Before
accessing one buffer, it has to be clarified if it's in the cache at all, or has it to be loaded from disk?
Looking through the full cache is not efficient, so Oracle introduced the concept of Cache Buffer
Chains.

They are based on hash methods: The hash value of a buffer decides, to which chain the buffer will
belong. As long as the asking process walks the chain, it holds a latch, protecting the chain from
being accessed a second time.

When spinning/waiting for the same latch, Session 2 burns CPU, and sometimes reports
“latch: cache buffer chain” to show us, what's going on.

Unfortunately, there are more chains than latches, so multiple chains share a serialization
instrument. By the way, this also sometimes leads to false contention:

• Session 1 looks for BH77 in CBC4F
• Session 2 looking for BH99 in CBC51 is locked out, spinning.

CBC SUGGESTIONS

The key for the analysis of Cache Buffer Chain waits is to know what's going on. A decent
diagnosis of all buffer cache access in the area.

In very rare cases, there are really “hot” blocks that are accessed intensively. But in many cases, just
the sheer number of buffer gets rises the number of CBC latch collisions. In this case, the efficiency
of the SQL in question is the first thing to approach.

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

COLLABORATE!
When talking about system design or re-design, a team comes to play. One will be the most-
motivated guy who WANTS the new environment, others will understand, others will complain, and
a few may block it, because they have different interests or politics in mind. This is the game, be
ready for it. In the end, nothing will work if you are not able to form a team of all layers!

These are “engineers to work together” - and sometimes a manager has to be worked with, too. :)

SUGGESTIONS

Collaboration is very personal. IT only works when you become a unit. So:
1. Try to have a wider view. Understand the other layers as far as remotely possible.
2. Help the other guys or girls to understand you, make yourself clear. Don't storm them with

database- or Oracle-special vocabulary. They might reciprocate accordingly!
3. All bridges are based on personal relationships. Don't act the big shot just because you are

the one making the deal today. Don't try to impress, don't try to suppress. Let them tell their
opinion.

4. In the end, build a solution TOGETHER. They will help to maintain it much more willingly
when it's “THEIR” box as well, not “just another database server the DBA wanted this
way”.

5. Avoid contentions and collisions - if there is team beer, make sure everybody can have at
least one in decent time! :)

Session #141 - Martin Klier: “YOUR machine and MY database”

Database – “Oracle Internals & Performance”

FURTHER READINGS
• Kevin Closson, on NUMA and Huge Pages

https://kevinclosson.wordpress.com/2010/03/18/you-buy-a-numa-system-oracle-says-
disable-numa-what-gives-part-i/
http://kevinclosson.wordpress.com/2010/09/28/configuring-linux-hugepages-for-oracle-
database-is-just-too-difficult-part-i/

• Craig Shallahamer, on Cache Buffer Chain visualization
http://shallahamer-orapub.blogspot.de/2010/09/buffer-cache-visualization-and-tool.html

• Arup Nanda, on ITL / Locks
http://arup.blogspot.de/2011/01/more-on-interested-transaction-lists.html

• Andrey Nikolaev on Mutexes
“Exploring mutexes, the Oracle RDBMS retrial spinlocks”

• Ronan Bourlier & Loïc Fura, IBM
“Oracle DB and AIX Best Practices for Performance & Tuning”

• My Oracle Support
Doc ID 864633.1 “Enable Oracle NUMA support with Oracle Server Version 11gR2”
Doc ID 1392497.1 “USE_LARGE_PAGES To Enable HugePages”
Doc ID 361468.1 “HugePages on Oracle Linux 64-bit”

Session #141 - Martin Klier: “YOUR machine and MY database”

http://arup.blogspot.de/2011/01/more-on-interested-transaction-lists.html
http://shallahamer-orapub.blogspot.de/2010/09/buffer-cache-visualization-and-tool.html
http://kevinclosson.wordpress.com/2010/09/28/configuring-linux-hugepages-for-oracle-database-is-just-too-difficult-part-i/
http://kevinclosson.wordpress.com/2010/09/28/configuring-linux-hugepages-for-oracle-database-is-just-too-difficult-part-i/
https://kevinclosson.wordpress.com/2010/03/18/you-buy-a-numa-system-oracle-says-disable-numa-what-gives-part-i/
https://kevinclosson.wordpress.com/2010/03/18/you-buy-a-numa-system-oracle-says-disable-numa-what-gives-part-i/

